

1. For the following functions, determine the nature of the singularity at $z = z_0$ (i.e. regular point, pole or essential singularity), compute the residue, calculate the radius of convergence of the Laurent series.

(a) $f(z) = \frac{z^2+3z+2}{z+1}$, $z_0 = -1$,

(b) $f(z) = \frac{(z+1)^{\frac{1}{3}}}{z}$, $z_0 = 0$,

(c) $f(z) = e^{\frac{z^2+1}{z-i}}$, $z_0 = i$,

(d) $f(z) = \frac{z^{-7}+1}{1+z}$, $z_0 = 0$.

2. Let γ be a simple, closed curve in \mathbb{C} which is counterclockwise oriented. What are the possible values of the following integrals, depending on the shape of γ ?

(a) $\int_{\gamma} \frac{1}{z(z+2)} dz$,

(b) $\int_{\gamma} e^{\frac{1}{z^2}} dz$,

(c) $\int_{\gamma} \frac{e^{iz}}{z^4+1} dz$,

(d) $\int_{\gamma} \frac{\sin(z)}{z} dz$.

3. Let γ the circle of radius 2 centered at the origin, parametrized counter-clockwise. What is the value of the integral

$$\int_{\gamma} \tan(z) dz,$$

where, as usual, $\tan(z) = \frac{\sin(z)}{\cos(z)}$.

4. Let $\mathcal{U} \subseteq \mathbb{C}$ be an open set and $p, q : \mathcal{U} \rightarrow \mathbb{C}$ be holomorphic functions and consider the function $f(z) = \frac{p(z)}{q(z)}$ defined at the points where $q(z) \neq 0$. Let also z_0 be a point in \mathcal{U} such that $q(z_0) = 0$ (i.e. a singularity of f).

(a) Assume that $p(z_0) \neq 0$ and that q vanishes to first order at z_0 , i.e. $q(z_0) = 0$ but $q'(z_0) \neq 0$.

Show that $\text{Res}_{z_0}(f) = \frac{p(z_0)}{q'(z_0)}$.

(b) Assume that p vanishes to first order at z_0 and that q vanishes to second order at z_0 ,

i.e. $q(z_0) = q'(z_0) = 0$ but $q''(z_0) \neq 0$. Show that $\text{Res}_{z_0}(f) = \frac{2p'(z_0)}{q''(z_0)}$.

5. Compute the following integral:

$$\int_0^{2\pi} \frac{\cos^2(\theta)}{13 - 5\cos(2\theta)} d\theta.$$

Hint: Use the residue theorem, by recasting the above as a complex integral over the unit circle. For $z = e^{i\theta}$, you might need to use the identity

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

(and similarly for $\cos(2\theta)$).